Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Tomography ; 8(3): 1221-1227, 2022 04 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1810207

RESUMEN

PURPOSE: To assess the diagnostic accuracy of traditional chest X-ray (CXR) and digital tomosynthesis (DTS) compared to computed tomography (CT) in detecting pulmonary interstitial changes in patients having recovered from severe COVID-19. MATERIALS AND METHODS: This was a retrospective observational study, and received local ethics committee approval. Patients suspected of having COVID-19 pneumonia upon emergency department admission between 1 March and 31 August 2020, and who underwent CXR followed by DTS and CT, were considered. Inclusion criteria were as follows: (1) patients with previous SARS-CoV-2 infection proven by a positive RT-PCR on nasopharyngeal swabs performed upon admission to the hospital, and with complete clinical recovery; (2) a diagnosis of SARS-CoV-2-related ARDS, according to the Berlin criteria, during hospitalization; (3) no recent history of other lung disease; and (4) complete imaging follow-up by CXR, DTS, and CT for at least 6 months and up to one year. Analysis of DTS images was carried out independently by two radiologists with 16 and 10 years of experience in chest imaging, respectively. The following findings were evaluated: (1) ground-glass opacities (GGOs); (2) air-space consolidations with or without air bronchogram; (3) reticulations; and (4) linear consolidation. Indicators of diagnostic performance of RX and digital tomosynthesis were calculated using CT as a reference. All data were analyzed using R statistical software (version 4.0.2, 2020). RESULTS: Out of 44 patients initially included, 25 patients (17 M/8 F), with a mean age of 64 years (standard deviation (SD): 12), met the criteria and were included. The overall average numbers of findings confirmed by CT were GGOs in 11 patients, lung consolidations in 8 patients, 7 lung interstitial reticulations, and linear consolidation in 20 patients. DTS showed a significantly higher diagnostic accuracy compared to CXR in recognizing interstitial lung abnormalities-especially GGOs (p = 0.0412) and linear consolidations (p = 0.0009). The average dose for chest X-ray was 0.10 mSv (0.07-0.32), for DTS was 1.03 mSv (0.74-2.00), and for CT scan was 3 mSv. CONCLUSIONS: According to our results, DTS possesses a high diagnostic accuracy, compared with CXR, in revealing lung fibrotic changes in patients who have recovered from COVID-19 pneumonia.


Asunto(s)
COVID-19 , Fibrosis Pulmonar , COVID-19/diagnóstico por imagen , Humanos , Persona de Mediana Edad , Intensificación de Imagen Radiográfica/métodos , Radiografía Torácica/métodos , SARS-CoV-2
2.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1389392

RESUMEN

Alveolar type II (ATII) cells are a key structure of the distal lung epithelium, where they exert their innate immune response and serve as progenitors of alveolar type I (ATI) cells, contributing to alveolar epithelial repair and regeneration. In the healthy lung, ATII cells coordinate the host defense mechanisms, not only generating a restrictive alveolar epithelial barrier, but also orchestrating host defense mechanisms and secreting surfactant proteins, which are important in lung protection against pathogen exposure. Moreover, surfactant proteins help to maintain homeostasis in the distal lung and reduce surface tension at the pulmonary air-liquid interface, thereby preventing atelectasis and reducing the work of breathing. ATII cells may also contribute to the fibroproliferative reaction by secreting growth factors and proinflammatory molecules after damage. Indeed, various acute and chronic diseases are associated with intensive inflammation. These include oedema, acute respiratory distress syndrome, fibrosis and numerous interstitial lung diseases, and are characterized by hyperplastic ATII cells which are considered an essential part of the epithelialization process and, consequently, wound healing. The aim of this review is that of revising the physiologic and pathologic role ATII cells play in pulmonary diseases, as, despite what has been learnt in the last few decades of research, the origin, phenotypic regulation and crosstalk of these cells still remain, in part, a mystery.


Asunto(s)
Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/fisiología , Enfermedades Pulmonares/fisiopatología , Pulmón/fisiología , Células Epiteliales Alveolares/citología , Animales , COVID-19/fisiopatología , Humanos , Inmunidad Innata , Iones/metabolismo , Pulmón/anatomía & histología , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/patología , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Regeneración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA